Fixed SQL code formatting errors by: - catching both single and double backslashes in the formatting - explicitly telling LLM how to format linebreaks Also did some changes to the UI and allowed general questions about the database content to be asked.
383 lines
12 KiB
Python
383 lines
12 KiB
Python
import json
|
|
import os
|
|
from typing import Any, Dict, Tuple
|
|
|
|
import dash_auth
|
|
import pandas as pd
|
|
from app_styles import header_style
|
|
from config import check_credentials
|
|
from dash import (
|
|
Dash,
|
|
Input,
|
|
Output,
|
|
State,
|
|
callback,
|
|
dash_table,
|
|
dcc,
|
|
get_asset_url,
|
|
html,
|
|
no_update,
|
|
)
|
|
from dash.exceptions import PreventUpdate
|
|
from data_chat import send_message
|
|
from sql_utils import execute_query, test_db_connection
|
|
|
|
check_credentials()
|
|
|
|
# first connection to SQL database to mitigate long startup time
|
|
try:
|
|
test_db_connection()
|
|
except Exception as e:
|
|
print(f"Error for first connection to Azure SQL Database: {e}")
|
|
|
|
external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
|
|
|
|
app = Dash(__name__, external_stylesheets=external_stylesheets)
|
|
auth = dash_auth.BasicAuth(
|
|
app,
|
|
{os.getenv("APP_UNAME"): os.getenv("APP_PW")},
|
|
)
|
|
app.index_string = header_style
|
|
|
|
notification_md = """
|
|
**Hinweise:**
|
|
|
|
GPT-4o kann einige Fehler machen. Sollte dies passieren wird eine Fehlermeldung angezeigt.
|
|
In diesem Fall lohnt es sich oft, die Anfrage leicht verändert erneut zu stellen und evtl
|
|
zusätzliche Informationen zu geben.
|
|
|
|
Das Modell ist dazu aufgefordert, den Output stets auf 100 Zeilen zu begrenzen.
|
|
|
|
Alle Daten sind komplett zufällig generiert und haben keine Beziehung zu realen Personen.
|
|
|
|
Es können sowohl allgemeine Fragen gestellt werden, als auch Fragen, die eine SQL-Abfrage erfordern.
|
|
|
|
Beispiel für allgemeine Frage: 'Nenne mir alle Tabellen in der Datenbank, sowie die entsprechenden
|
|
Spalten und eine kurze Erklärung über deren Inhalt.'
|
|
|
|
**SQL-Beispielfragen**:
|
|
- Wie viele Kunden haben wir in Hannover?
|
|
- Zeige alle Kunden in Bremen.
|
|
- Berechne den gesamten Stromverbrauch aller Kunden in Magdeburg.
|
|
- Zeige alle Kunden, die zwischen 2021 und 2022 mindestens 200 Kubikmeter Gas verbraucht haben.
|
|
- Wie viele Kunden haben zwischen 2021 und 2022 weniger Strom verbraucht als zwischen 2022
|
|
und 2023?
|
|
|
|
Weitere Informationen zu den Daten, dem Code sowie zur Nutzung befinden sich in der README im
|
|
[GiTea Repository](https://gitea.captain.particlephysics.de/quadfaselt/grid_application).
|
|
"""
|
|
|
|
err_style = {
|
|
"height": "0px",
|
|
"overflow": "hidden",
|
|
"transition": "height 0.5s ease-in-out",
|
|
"border-radius": "15px",
|
|
"background-color": "#FFCCCB",
|
|
"text-align": "center",
|
|
"color": "#FF6B6B",
|
|
"margin-top": "20px",
|
|
"margin-left": "20px",
|
|
"margin-right": "20px",
|
|
"font-weight": "bold",
|
|
"display": "flex",
|
|
"justify-content": "center",
|
|
"align-items": "center",
|
|
}
|
|
|
|
|
|
def render_table(df: pd.DataFrame) -> dash_table.DataTable:
|
|
"""Create a Dash DataTable from a pandas DataFrame.
|
|
|
|
Parameters
|
|
----------
|
|
df : pd.DataFrame
|
|
The input DataFrame to be rendered as a table.
|
|
|
|
Returns
|
|
-------
|
|
dash_table.DataTable
|
|
A Dash DataTable component with styled layout and pagination.
|
|
"""
|
|
tab = dash_table.DataTable(
|
|
id="table",
|
|
columns=[{"name": i, "id": i} for i in df.columns],
|
|
data=df.to_dict("records"),
|
|
page_size=10,
|
|
style_table={
|
|
"overflowX": "auto",
|
|
"margin": "auto",
|
|
"width": "96%",
|
|
"margin-top": "20px",
|
|
},
|
|
style_cell={
|
|
"minWidth": "100px",
|
|
"width": "150px",
|
|
"maxWidth": "300px",
|
|
"overflow": "hidden",
|
|
"textOverflow": "ellipsis",
|
|
},
|
|
style_header={
|
|
"backgroundColor": "lightblue",
|
|
"fontWeight": "bold",
|
|
"color": "black",
|
|
},
|
|
)
|
|
return tab
|
|
|
|
|
|
def get_layout() -> html.Div:
|
|
"""Generate the layout for a Dash application.
|
|
|
|
This function creates a complex layout for a database chat interface
|
|
and a direct SQL query interface. It includes various Dash components
|
|
such as text areas, buttons, and a loading spinner.
|
|
|
|
The layout consists of:
|
|
- A header with title and logo
|
|
- A textarea for user input (database chat)
|
|
- A submit button for the database chat
|
|
- A Notification about the connection time and LLM performance
|
|
- An error message area
|
|
- A loading spinner and output area for database responses
|
|
- A section for direct SQL queries, including a textarea and submit button
|
|
- An output area for SQL query results
|
|
|
|
Returns
|
|
-------
|
|
html.Div
|
|
A Dash html.Div component containing the entire layout of the application.
|
|
"""
|
|
global err_style
|
|
tmp_style = err_style.copy()
|
|
tmp_style["height"] = "0px"
|
|
|
|
start_value = "Stelle deine Frage an die Datenbank..."
|
|
|
|
layout = html.Div(
|
|
[
|
|
html.Div(
|
|
[
|
|
html.H1("Datenbank-Chat", className="heading"),
|
|
html.Img(src=get_asset_url("logo.png"), className="logo"),
|
|
],
|
|
className="header-container",
|
|
), # Header
|
|
html.Div(
|
|
(
|
|
"Chatte mit unserer SQL-Datenbank, die Daten zu Zählerstandmessungen der "
|
|
"KundInnen enthält!"
|
|
),
|
|
style={"margin-left": "20px", "font-weight": "bold", "font-size": "20px"},
|
|
),
|
|
dcc.Store(
|
|
id="tmp-value", data=start_value, storage_type="memory"
|
|
), # Store previous prompt
|
|
dcc.Textarea(
|
|
id="input-field",
|
|
value=start_value,
|
|
style={"width": "96%", "height": 200, "margin-left": "20px"},
|
|
), # Input field
|
|
html.Div([]), # Needed for keeping the layout clean
|
|
html.Button(
|
|
"Abschicken",
|
|
id="submit-button",
|
|
n_clicks=0,
|
|
disabled=False,
|
|
style={"margin-left": "20px"},
|
|
), # Submit button
|
|
dcc.Markdown(
|
|
notification_md,
|
|
style={
|
|
"margin-left": "20px",
|
|
"margin-top": "20px",
|
|
"margin-right": "10px",
|
|
"background-color": "#C7E6F5",
|
|
"border-radius": "5px",
|
|
"padding": "10px",
|
|
},
|
|
),
|
|
html.Div(
|
|
[html.P("Bitte eine neue Anfrage eingeben.")], id="error", style=tmp_style
|
|
), # Error message (only visible if input is not updated but submit button is clicked)
|
|
dcc.Loading(
|
|
id="loading",
|
|
type="default",
|
|
children=[
|
|
html.Div(
|
|
"Hier erscheint die Antwort des KI-Modells.",
|
|
id="text-output",
|
|
style={
|
|
"whiteSpace": "pre-line",
|
|
"margin-top": "30px",
|
|
"margin-left": "20px",
|
|
"margin-right": "20px",
|
|
"border": "2px solid #86bc25",
|
|
"border-radius": "15px",
|
|
"padding": "20px",
|
|
},
|
|
)
|
|
],
|
|
),
|
|
html.H2(
|
|
"Direkte SQL-Abfrage",
|
|
style={"margin-left": "20px", "margin-top": "50px", "font-size": 24},
|
|
), # SQL Header
|
|
html.Div(
|
|
(
|
|
"Hier kann der ausgegebene SQL-Code getestet oder mit selbst"
|
|
"geschriebenem Code verglichen werden."
|
|
),
|
|
style={"margin-left": "20px", "font-weight": "bold", "font-size": "16px"},
|
|
),
|
|
dcc.Textarea(
|
|
id="sql-input-field",
|
|
value="(Microsoft) SQL-Abfrage eingeben...",
|
|
style={"width": "96%", "height": 200, "margin-left": "20px"},
|
|
), # SQL Input field
|
|
html.Div([]), # Needed for keeping the layout clean
|
|
html.Button(
|
|
"Abschicken",
|
|
id="sql-submit-button",
|
|
n_clicks=0,
|
|
disabled=False,
|
|
style={"margin-left": "20px"},
|
|
), # Submit button
|
|
html.Div(id="sql-output", style={"margin-top": "10px"}), # SQL Output
|
|
],
|
|
className="container",
|
|
)
|
|
|
|
return layout
|
|
|
|
|
|
app.layout = html.Div([get_layout()])
|
|
|
|
|
|
@callback(
|
|
Output("text-output", "children"),
|
|
Output("tmp-value", "data"),
|
|
Output("error", "style"),
|
|
Output("error", "children"),
|
|
Input("submit-button", "n_clicks"),
|
|
State("input-field", "value"),
|
|
State("tmp-value", "data"),
|
|
prevent_initial_call=True,
|
|
running=[
|
|
(Output("submit-button", "disabled"), True, False),
|
|
(
|
|
Output("submit-button", "style"),
|
|
{"opacity": 0.5, "margin-left": "20px"},
|
|
{"opacity": 1.0, "margin-left": "20px"},
|
|
),
|
|
],
|
|
)
|
|
def update_output(n_clicks: int, value: str, data: str) -> Tuple[Any, Any, Dict[str, str], Any]:
|
|
"""Update the output based on user input and button clicks.
|
|
|
|
Parameters
|
|
----------
|
|
n_clicks : int
|
|
Number of times the submit button has been clicked.
|
|
value : str
|
|
Current value of the input field.
|
|
data : str
|
|
Previously stored value.
|
|
|
|
Returns
|
|
-------
|
|
Tuple[str, str, Dict[str, Any]]
|
|
Updated output text, new stored value, and error style.
|
|
"""
|
|
global err_style
|
|
db_connected = test_db_connection()
|
|
if n_clicks > 0 and value != data and db_connected:
|
|
result = send_message(value)
|
|
err_style["height"] = "0px"
|
|
|
|
# parse LLM response to dict, then try to execute the query
|
|
try:
|
|
parsed_result = json.loads(result, strict=False)
|
|
if parsed_result["query"] == "NA":
|
|
children = [
|
|
html.P([html.B("Zusammenfassung: "), f"{parsed_result['summary']}"]),
|
|
]
|
|
else:
|
|
result_table = execute_query(parsed_result["query"])
|
|
children = [
|
|
html.P([html.B("Zusammenfassung:\n"), f"{parsed_result['summary']}"]),
|
|
html.P([html.B("SQL Abfrage:\n"), f"{parsed_result['query']}"]),
|
|
render_table(result_table),
|
|
]
|
|
return children, value, err_style, html.P("")
|
|
except Exception:
|
|
err_style["height"] = "50px"
|
|
err_child = html.Div(
|
|
(
|
|
"Ein Fehler ist aufgetreten. Versuchen Sie, "
|
|
"die Anfrage genauer zu beschreiben und versuchen Sie es erneut."
|
|
)
|
|
)
|
|
|
|
return no_update, value, err_style, err_child
|
|
|
|
elif not db_connected:
|
|
err_style["height"] = "50px"
|
|
err_child = html.P(
|
|
(
|
|
"Fehler beim Herstellen der Verbindung zur "
|
|
"Datenbank. Bitte versuche es später erneut."
|
|
)
|
|
)
|
|
return no_update, no_update, err_style, err_child
|
|
|
|
elif value == data:
|
|
|
|
err_style["height"] = "50px"
|
|
err_child = html.P("Bitte eine neue Anfrage eingeben.")
|
|
return no_update, no_update, err_style, err_child
|
|
|
|
raise PreventUpdate
|
|
|
|
|
|
@callback(
|
|
Output("sql-output", "children"),
|
|
Input("sql-submit-button", "n_clicks"),
|
|
State("sql-input-field", "value"),
|
|
prevent_initial_call=True,
|
|
)
|
|
def run_sql_query(n_clicks: int, value: str) -> str:
|
|
"""Run a SQL query and return the results.
|
|
|
|
Parameters
|
|
----------
|
|
n_clicks : int
|
|
Number of times the submit button has been clicked.
|
|
value : str
|
|
Current value of the input field.
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
The results of the SQL query.
|
|
"""
|
|
if n_clicks > 0:
|
|
result = execute_query(value)
|
|
if isinstance(result, str):
|
|
global err_style
|
|
tmp_style = err_style.copy()
|
|
tmp_style["height"] = "100px"
|
|
tmp_style["padding"] = "20px"
|
|
err_child = html.Div(
|
|
[html.P(f"Fehler bei der Ausführung der Abfrage: {result}")], style=tmp_style
|
|
)
|
|
return err_child
|
|
else:
|
|
return render_table(result)
|
|
raise PreventUpdate
|
|
|
|
|
|
server = app.server
|
|
|
|
if __name__ == "__main__":
|
|
app.run(debug=True)
|